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Some Books That Do Not Cover This Topic 
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Signature of a Character Encoding Collision 

 

The browser renders these oddities: 

• Question marks inside black diamonds 
• Inverted question marks 
• Ã (the A-Tilde), or…  
• Å (the A-Ring), plus… 
• some drivel 
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Signature of a Character Encoding Collision 
 
 

If your <meta charset> matches your data, things usually 
work out well.  However, if there is a mismatch… 
 
Consistently  ISO-8859 Data  UTF-8 Data 
ISO or UTF-8  Browser UTF-8  Browser ISO-8859 
  Françoise    Fran�oise   FranÃ§oise  
  Å-Ring     �-Ring    Ã…-Ring 
  ßeta or Beta?    �eta or Beta?   ÃŸeta or Beta? 
  Öh löök, umlauts!   �h l��k, umlauts!  Ã–h lÃ¶Ã¶k, umlauts! 
  ENCYCLOPÆDIA    ENCYCLOP�DIA   ENCYCLOPÃ†DIA 
  A stealthy ƒart   A stealthy �art  A stealthy Æ’art 
     Ðe lónlí blú bojs   �e l�nl� bl� bojs   Ã�e lÃ³nlÃ blÃº bojs 
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Signature of a Character Encoding Collision
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Brief History of Character Encoding 

 
American Standard Code for Information Interchange 
• 127 ASCII Characters    0000 0000 – 0111 1111 
• 256 Extended ASCII Chars 1000 0000 – 1111 1111 

o  Printable glyphs (mid-1980's) 
o  Incompatible “standards” 

 
¿ What of those funny ácceñted chars ? 
• Emergence of Latin-1, ISO-8859-1, Windows-1252 
• Gobbled up all the code points above 7F 
• Oops. What about the €uro? Maastricht 1992 
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Brief History of Character Encoding 

 
Realities of the 1990’s 
• Extended ASCII was adequate for most Western text 
• Nascent WWW began to connect societies 
• PHP was born with this in mind: 

 
“A string is series of characters, where a character is the 
same as a byte. This means that PHP only supports a 
256-character set, and hence does not offer native 
Unicode support.” 
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Brief History of Character Encoding 

 
Realities of the 1990’s and beyond 
• Overwhelming dependence on (Extended) ASCII 
• Many conflicting and unwieldy encoding schemes 
• Byte-Order Marks and Endianness 
• 1992: Thompson and Pike described UTF-8 
• 2003: RFC 3629 – UTF-8 allowed 1,000,000+ chars 
• 2006: UTF-8 “took off” 
• 2008: UTF-8 Most. Popular. Encoding. Ever. 
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Growth of UTF-8 on the Web 

 
"UnicodeGrow2b" by Krauss - Own work. Licensed under Creative Commons Attribution-Share Alike 4.0 via 
Wikimedia Commons - http://commons.wikimedia.org/wiki/File:UnicodeGrow2b.png 

http://commons.wikimedia.org/wiki/File:UnicodeGrow2b.png�
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Genius of UTF-8 Encoding 
 

All one-byte ASCII Characters Preserved 1:1 
Self-Evident with no BOM or Endian 
 
UTF-8 Encoding 
bytes  bits*  representation 
  1      7    0bbb bbbb 
  2     11    110b bbbb   10bb bbbb 
  3     16    1110 bbbb   10bb bbbb   10bb bbbb 
  4     21    1111 0bbb   10bb bbbb   10bb bbbb   10bb bbbb 
   
*bits used in character, aside from the UTF-8 signal bits 
 2^7 = 128 chars. 2^8 = 256 chars. 2^21 = 2.1MM chars. 

 
But… 
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Downside of UTF-8 Encoding 
 

If a byte has the high-order bit on, the byte is part of a 
UTF-8 multi-byte character. 
 
Ergo: All one-byte Extended ASCII characters are lost. 
 
“A string is series of characters, where a character is the 
same as a byte. This means that PHP only supports a 
256-character set, and hence does not offer native 
Unicode support.” 
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Most Common PHP UTF-8 Encoding Issues 
 
Western-European accented chars stored in ISO-8859-1 

Example: Æ (AE Ligature) character  
• decimal code point 198, hex C6, binary 1100 0110   
• Two high-order bits imply a two-byte UTF-8 character 
• UTF-8 AE Ligature is hexadecimal C386  

Similar collisions occur with accents, umlauts, tildes, 
rings and some currency symbols 
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The PHP Recondite Conundrum 
 
In UTF-8 a character is not the same as a byte! 

PHP does not dictate a specific encoding for strings 
• Is the string á one-byte hex E1 (ISO-8859-1)? 
• Is the string á two-byte hex C3A1 (UTF-8)? 

It depends!  What character encoding was in use at the 
time the string literal was created? Check your IDE or 
Editor settings.  PHP mb_detect_encoding() knows á is 
not an ASCII character, but will be unable to distinguish 
between ISO-8859-1 and UTF-8. 
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Changing Posture at Release 5.4+ 
 

PHP htmlentities(), htmlspecialchars() default charset 
• “Optional” 3rd argument for default charset 
• PHP  <  5.4.0 = ISO-8859-1  
• PHP >= 5.4.0 = UTF-8 
• PHP >= 5.6.0 = configuration option (Sheesh!) 

 
“Although this argument is technically optional, you are 
highly encouraged to specify the correct value for your 
code."  How many of your code points does this touch? 
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Confusing the Browsers with Charset 

 
Your text editor / IDE settings are in play 
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Converting Existing Data 

 
PHP utf8_encode() converts single-byte characters 
above code point 127 to UTF-8 multibyte characters* 
 
PHP strlen() increases because it is a byte count 
 
PHP mb_strlen() returns character count 
 
http://php.net/manual/en/ref.mbstring.php 
 
* This is a mung and cannot be re-run on the same string 
 

http://php.net/manual/en/ref.mbstring.php�
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Converting Existing Data 

 
PHP utf8_decode() tries to convert UTF-8 characters to 
their ISO-8859-1 equivalents.  Does not always work – 
many more UTF-8 characters! 
 
Failure results include missing or garbled text. 
 
€ may be best represented by &euro; and ƒ by &fnof; 
 
See list of named HTML entities in the article.  
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Converting Existing Data 

 
Assumptions:  
• UTF8_decode() assumes input is UTF-8 
• UTF8_encode() assumes input is ISO-8859-1 
• Where does that leave Windows-1252? 
• Maybe worth considering iconv()? 

 
PHP substr() may split multibyte characters.   
 
Use mb_substr() instead.  How many code points…? 
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The BOM is not Da Bomb 

 
Byte Order Marks are out-of-place in UTF-8 documents 
 
Unfortunately, Notepad ® may create and insert BOM 
 
UTF-8 BOM hex value: EF BB BF 
 
UTF-8 BOM browser visual:  ï»¿  at the start of string 
 
if(substr($data, 0, 3) == pack('CCC', 239, 187, 191)) 
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Character Sets in MySQL 

 
mysql_set_charset(‘utf8mb4’); 
 
$mysqli = new mysqli(‘localhost’, ‘user’, ‘pass’, ‘dbn’); 
$mysqli->set_charset(‘utf8mb4’); 
 
$pdo = new PDO( 
‘mysql:host=localhost;dbname=dbn;charset=utf8mb4’, 
‘user', ‘pass'); 
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Converting Existing Tables in MySQL 

 
May want to use ALTER TABLE to widen the columns? 
 
Charset name is not utf8 – only 3 characters 
Charset name is utf8mb4 – gives 4 characters 
 
MySQL can return the right characters, even if you have 
Extended ASCII in the database 
 
Run the query after set_charset().  Query, set_charset(), 
data_seek() will return old Latin1 data set 
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Loading tables with PDO 

 
Unlike MySQLi, you must use UTF-8 input data 
 
With Extended ASCII input data, data loss occurs 
 
Column is truncated at first invalid UTF-8 character 
 
Silent: No errors or exceptions 
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Microsoft “Productivity” Software 

 
General Assumptions: 
• Your data is ASCII 
• You want it rendered in CP-1252 
• If you say “Unicode” you mean UTF-16 

 
Expected (but unwanted) results: 
• UTF-8 characters will be garbled 

 
Watch out for .csv files destined for Excel spreadsheets 
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Microsoft “Productivity” Software 

 
Excel does not recognize UTF-8 data (?) 
 
…Unless you tell Excel that it’s UTF-8 data (?) 
 
…But UTF-8 is self-evident (?) 
 
Princeton University (home to Einstein) says: 
http://www.itg.ias.edu/content/how-import-csv-file-
uses-utf-8-character-encoding-0 

http://www.itg.ias.edu/content/how-import-csv-file-uses-utf-8-character-encoding-0�
http://www.itg.ias.edu/content/how-import-csv-file-uses-utf-8-character-encoding-0�
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Microsoft “Productivity” Software 

 
Actual quotes from a support dialog: 
 
“I would like to save a csv file from an Excel 2013 sheet 
with utf-8 encoding.  Does someone know how to do 
this?” - Peter 

 
“I would need more details to assist you: What 
difference are you trying to achieve…” - Aravinda 
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Microsoft “Productivity” Software 

 
Copy Word ® / Paste into HTML <textarea> 
 
Usually OK if you’re rendering ISO-8859-1 
 
Usually garbled if you’re rendering UTF-8 
 
“Fixed” by PHP get_html_translation_table() with named 
character entities.  Eg:  “   becomes  &laquo; 
 
But strlen() increases.  Check SQL column widths  
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Text Editors 

 
Symptom:  
The requested URL  
/genealogy/Letters/Ã¢â‚¬Å“1890-Dec-7.jpg"  
was not found on this server 
 
Cause: 
<a href=“1890-Dec-7.jpg" target=“_blank”>Original</a> 
 
Diagnosis:  
TextWrangler uses Microsoft-style quotes 
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Malformed Characters in JSON Strings 

 
json_decode() returns NULL 
 
PHP5.3 json_last_error()  
PHP5.5 json_last_error_message() 
JSON_ERROR_UTF8  (Malformed UTF-8 characters 
possibly incorrectly encoded) 
 
Locate the bad character(s)? 
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Malformed Characters in JSON Strings 

 
Locate the bad character(s)? 

 

 
 

But what if the JSON string is thousands of bytes long? 
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Malformed Characters in JSON strings 
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Summary 

 

 
http://www.reddit.com/r/MapPorn/comments/1dqh7d/after_seeing_a_recent_post_about_the_population/
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http://iconoun.com/articles/collisions/
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