
Unicode, PHP, and Character Set Collisions 

 
Ray Paseur 

DC PHP Developers’ Community 
10th September 2014 



Unicode, PHP, and Character Set Collisions 
Some Books That Do Not Cover This Topic 

 

  



Unicode, PHP, and Character Set Collisions 
Signature of a Character Encoding Collision 

 

The browser renders these oddities: 

• Question marks inside black diamonds 
• Inverted question marks 
• Ã (the A-Tilde), or…  
• Å (the A-Ring), plus… 
• some drivel 

 



Unicode, PHP, and Character Set Collisions 

Signature of a Character Encoding Collision 
 
 

If your <meta charset> matches your data, things usually 
work out well.  However, if there is a mismatch… 
 
Consistently  ISO-8859 Data  UTF-8 Data 
ISO or UTF-8  Browser UTF-8  Browser ISO-8859 
  Françoise    Fran�oise   FranÃ§oise  
  Å-Ring     �-Ring    Ã…-Ring 
  ßeta or Beta?    �eta or Beta?   ÃŸeta or Beta? 
  Öh löök, umlauts!   �h l��k, umlauts!  Ã–h lÃ¶Ã¶k, umlauts! 
  ENCYCLOPÆDIA    ENCYCLOP�DIA   ENCYCLOPÃ†DIA 
  A stealthy ƒart   A stealthy �art  A stealthy Æ’art 
     Ðe lónlí blú bojs   �e l�nl� bl� bojs   Ã�e lÃ³nlÃ blÃº bojs 



Unicode, PHP, and Character Set Collisions 
Signature of a Character Encoding Collision

 
  



Unicode, PHP, and Character Set Collisions 
Brief History of Character Encoding 

 
American Standard Code for Information Interchange 
• 127 ASCII Characters    0000 0000 – 0111 1111 
• 256 Extended ASCII Chars 1000 0000 – 1111 1111 

o  Printable glyphs (mid-1980's) 
o  Incompatible “standards” 

 
¿ What of those funny ácceñted chars ? 
• Emergence of Latin-1, ISO-8859-1, Windows-1252 
• Gobbled up all the code points above 7F 
• Oops. What about the €uro? Maastricht 1992 



Unicode, PHP, and Character Set Collisions 
Brief History of Character Encoding 

 
Realities of the 1990’s 
• Extended ASCII was adequate for most Western text 
• Nascent WWW began to connect societies 
• PHP was born with this in mind: 

 
“A string is series of characters, where a character is the 
same as a byte. This means that PHP only supports a 
256-character set, and hence does not offer native 
Unicode support.” 



Unicode, PHP, and Character Set Collisions 
Brief History of Character Encoding 

 
Realities of the 1990’s and beyond 
• Overwhelming dependence on (Extended) ASCII 
• Many conflicting and unwieldy encoding schemes 
• Byte-Order Marks and Endianness 
• 1992: Thompson and Pike described UTF-8 
• 2003: RFC 3629 – UTF-8 allowed 1,000,000+ chars 
• 2006: UTF-8 “took off” 
• 2008: UTF-8 Most. Popular. Encoding. Ever. 

  



Unicode, PHP, and Character Set Collisions 
Growth of UTF-8 on the Web 

 
"UnicodeGrow2b" by Krauss - Own work. Licensed under Creative Commons Attribution-Share Alike 4.0 via 
Wikimedia Commons - http://commons.wikimedia.org/wiki/File:UnicodeGrow2b.png 

http://commons.wikimedia.org/wiki/File:UnicodeGrow2b.png�


Unicode, PHP, and Character Set Collisions 

Genius of UTF-8 Encoding 
 

All one-byte ASCII Characters Preserved 1:1 
Self-Evident with no BOM or Endian 
 
UTF-8 Encoding 
bytes  bits*  representation 
  1      7    0bbb bbbb 
  2     11    110b bbbb   10bb bbbb 
  3     16    1110 bbbb   10bb bbbb   10bb bbbb 
  4     21    1111 0bbb   10bb bbbb   10bb bbbb   10bb bbbb 
   
*bits used in character, aside from the UTF-8 signal bits 
 2^7 = 128 chars. 2^8 = 256 chars. 2^21 = 2.1MM chars. 

 
But… 



Unicode, PHP, and Character Set Collisions 

Downside of UTF-8 Encoding 
 

If a byte has the high-order bit on, the byte is part of a 
UTF-8 multi-byte character. 
 
Ergo: All one-byte Extended ASCII characters are lost. 
 
“A string is series of characters, where a character is the 
same as a byte. This means that PHP only supports a 
256-character set, and hence does not offer native 
Unicode support.” 
  



Unicode, PHP, and Character Set Collisions 

Most Common PHP UTF-8 Encoding Issues 
 
Western-European accented chars stored in ISO-8859-1 

Example: Æ (AE Ligature) character  
• decimal code point 198, hex C6, binary 1100 0110   
• Two high-order bits imply a two-byte UTF-8 character 
• UTF-8 AE Ligature is hexadecimal C386  

Similar collisions occur with accents, umlauts, tildes, 
rings and some currency symbols 
  



Unicode, PHP, and Character Set Collisions 

The PHP Recondite Conundrum 
 
In UTF-8 a character is not the same as a byte! 

PHP does not dictate a specific encoding for strings 
• Is the string á one-byte hex E1 (ISO-8859-1)? 
• Is the string á two-byte hex C3A1 (UTF-8)? 

It depends!  What character encoding was in use at the 
time the string literal was created? Check your IDE or 
Editor settings.  PHP mb_detect_encoding() knows á is 
not an ASCII character, but will be unable to distinguish 
between ISO-8859-1 and UTF-8. 



Unicode, PHP, and Character Set Collisions 

Changing Posture at Release 5.4+ 
 

PHP htmlentities(), htmlspecialchars() default charset 
• “Optional” 3rd argument for default charset 
• PHP  <  5.4.0 = ISO-8859-1  
• PHP >= 5.4.0 = UTF-8 
• PHP >= 5.6.0 = configuration option (Sheesh!) 

 
“Although this argument is technically optional, you are 
highly encouraged to specify the correct value for your 
code."  How many of your code points does this touch? 

  



Unicode, PHP, and Character Set Collisions 
Confusing the Browsers with Charset 

 
Your text editor / IDE settings are in play 

 
 
 

 
  



Unicode, PHP, and Character Set Collisions 
Converting Existing Data 

 
PHP utf8_encode() converts single-byte characters 
above code point 127 to UTF-8 multibyte characters* 
 
PHP strlen() increases because it is a byte count 
 
PHP mb_strlen() returns character count 
 
http://php.net/manual/en/ref.mbstring.php 
 
* This is a mung and cannot be re-run on the same string 
 

http://php.net/manual/en/ref.mbstring.php�


Unicode, PHP, and Character Set Collisions 
Converting Existing Data 

 
PHP utf8_decode() tries to convert UTF-8 characters to 
their ISO-8859-1 equivalents.  Does not always work – 
many more UTF-8 characters! 
 
Failure results include missing or garbled text. 
 
€ may be best represented by &euro; and ƒ by &fnof; 
 
See list of named HTML entities in the article.  



Unicode, PHP, and Character Set Collisions 
Converting Existing Data 

 
Assumptions:  
• UTF8_decode() assumes input is UTF-8 
• UTF8_encode() assumes input is ISO-8859-1 
• Where does that leave Windows-1252? 
• Maybe worth considering iconv()? 

 
PHP substr() may split multibyte characters.   
 
Use mb_substr() instead.  How many code points…? 
  



Unicode, PHP, and Character Set Collisions 
The BOM is not Da Bomb 

 
Byte Order Marks are out-of-place in UTF-8 documents 
 
Unfortunately, Notepad ® may create and insert BOM 
 
UTF-8 BOM hex value: EF BB BF 
 
UTF-8 BOM browser visual:  ï»¿  at the start of string 
 
if(substr($data, 0, 3) == pack('CCC', 239, 187, 191)) 
  



Unicode, PHP, and Character Set Collisions 
Character Sets in MySQL 

 
mysql_set_charset(‘utf8mb4’); 
 
$mysqli = new mysqli(‘localhost’, ‘user’, ‘pass’, ‘dbn’); 
$mysqli->set_charset(‘utf8mb4’); 
 
$pdo = new PDO( 
‘mysql:host=localhost;dbname=dbn;charset=utf8mb4’, 
‘user', ‘pass'); 
  



Unicode, PHP, and Character Set Collisions 
Converting Existing Tables in MySQL 

 
May want to use ALTER TABLE to widen the columns? 
 
Charset name is not utf8 – only 3 characters 
Charset name is utf8mb4 – gives 4 characters 
 
MySQL can return the right characters, even if you have 
Extended ASCII in the database 
 
Run the query after set_charset().  Query, set_charset(), 
data_seek() will return old Latin1 data set 



Unicode, PHP, and Character Set Collisions 
Loading tables with PDO 

 
Unlike MySQLi, you must use UTF-8 input data 
 
With Extended ASCII input data, data loss occurs 
 
Column is truncated at first invalid UTF-8 character 
 
Silent: No errors or exceptions 
 
  



Unicode, PHP, and Character Set Collisions 
Microsoft “Productivity” Software 

 
General Assumptions: 
• Your data is ASCII 
• You want it rendered in CP-1252 
• If you say “Unicode” you mean UTF-16 

 
Expected (but unwanted) results: 
• UTF-8 characters will be garbled 

 
Watch out for .csv files destined for Excel spreadsheets 
  



Unicode, PHP, and Character Set Collisions 
Microsoft “Productivity” Software 

 
Excel does not recognize UTF-8 data (?) 
 
…Unless you tell Excel that it’s UTF-8 data (?) 
 
…But UTF-8 is self-evident (?) 
 
Princeton University (home to Einstein) says: 
http://www.itg.ias.edu/content/how-import-csv-file-
uses-utf-8-character-encoding-0 

http://www.itg.ias.edu/content/how-import-csv-file-uses-utf-8-character-encoding-0�
http://www.itg.ias.edu/content/how-import-csv-file-uses-utf-8-character-encoding-0�


Unicode, PHP, and Character Set Collisions 
Microsoft “Productivity” Software 

 
Actual quotes from a support dialog: 
 
“I would like to save a csv file from an Excel 2013 sheet 
with utf-8 encoding.  Does someone know how to do 
this?” - Peter 

 
“I would need more details to assist you: What 
difference are you trying to achieve…” - Aravinda 

 
  



Unicode, PHP, and Character Set Collisions 
Microsoft “Productivity” Software 

 
Copy Word ® / Paste into HTML <textarea> 
 
Usually OK if you’re rendering ISO-8859-1 
 
Usually garbled if you’re rendering UTF-8 
 
“Fixed” by PHP get_html_translation_table() with named 
character entities.  Eg:  “   becomes  &laquo; 
 
But strlen() increases.  Check SQL column widths  



Unicode, PHP, and Character Set Collisions  
Text Editors 

 
Symptom:  
The requested URL  
/genealogy/Letters/Ã¢â‚¬Å“1890-Dec-7.jpg"  
was not found on this server 
 
Cause: 
<a href=“1890-Dec-7.jpg" target=“_blank”>Original</a> 
 
Diagnosis:  
TextWrangler uses Microsoft-style quotes 



Unicode, PHP, and Character Set Collisions  
Malformed Characters in JSON Strings 

 
json_decode() returns NULL 
 
PHP5.3 json_last_error()  
PHP5.5 json_last_error_message() 
JSON_ERROR_UTF8  (Malformed UTF-8 characters 
possibly incorrectly encoded) 
 
Locate the bad character(s)? 
  



Unicode, PHP, and Character Set Collisions  
Malformed Characters in JSON Strings 

 
Locate the bad character(s)? 

 

 
 

But what if the JSON string is thousands of bytes long? 
  



Unicode, PHP, and Character Set Collisions 
Malformed Characters in JSON strings 

 



Unicode, PHP, and Character Set Collisions 
Summary 

 

 
http://www.reddit.com/r/MapPorn/comments/1dqh7d/after_seeing_a_recent_post_about_the_population/



Unicode, PHP, and Character Set Collisions 

http://iconoun.com/articles/collisions/

 


	Unicode, PHP, and Character Set Collisions

